

Pure Math Syllabus (2019-2020)

For Bilingual Program

Grades (11 - 12)

Based on:

- 1. Text Books:
- Advanced Maths AS Core For Edexcel (C1-C2) Pearson Longman Advanced Maths AS Core For Edexcel (C3-C4) - Pearson Longman
- 2. Minimum student contact time (220 min/week)

		· · · · · · · · · · · · · · · · · · ·					CO TA	
				ALGE	BRA		Area of maths covered	
Exponents & Logs E			quations	Inequalities	Quadratic Equations & Functions	Topic		
010	C2:18 (Pg 312- 323)		(,)	C1:5 (pg 72-	C1:4 (pg 65- 70)	C1:3 (pg 41- 63)	in book PEARSON LONGMAN	Chapter
Graphs.Relationship between (log and exp).	 Special cases; log_aa, log_a1, log_a(1÷a). Exponential function: 	ar	discilliffiale)	 Solving simultaneous equations Linear, One linear & one quadratic (algebraically & graphically) Intersection of linear & quadratic functions (3 cases of discriminate) 	 Solving inequalities Linear Quadratic 	 Solving quadratic equations by: Factorizing Quadratic formula Completing the square Sketching quadratic graphs Max/Min; Shape Turning Point (vertex) & Axis of Symmetry Nature of roots(working with the discriminate) 	Components of topic to be covered	
	2		-	_	0.5	- 	No. of Weeks	
• Special cases $\log_a a$; $\log_a 1$; $\log_a (\frac{1}{a})$	• To include: $\log_c ab$; $\log_c rac{a}{b}$; $\log_c a^n$	Sketch $y=a^x$ and translations $y=a^{ax+b}+c$ Laws of logarithms	Use of intersection points of graphs of functions to solve equations.	Simultaneous equations: analytical solution by substitution. For example, where one equation is linear and one equation is quadratic. Graphs of functions; sketching curves. Geometrical interpretation of algebraic solution of equations.	Solution of linear and quadratic inequalities. For example, $ax + b > cx + d$, $px^2 + qx + r > 0$, $px^2 + qx + r < ax + b$	Completing the square. Solution of quadratic equations. Solution of quadratic equations by factorisation, using the formula and completing the square. Quadratic functions and their graphs Graphs of functions; sketching curves defined by simple equations. Geometrical interpretation of algebraic solution of equations. Use of intersection points of graphs of functions to solve equations. The discriminate of a quadratic function	Objectives	

			Т	
	 Graphs of trigonometric functions: y=sinx, cosx, tanx. 	(Pg 254- 268)	rig fun angl	
such as $y = 3\sin x$, $y = \sin\left(x + \frac{\pi}{6}\right)$, $y = \sin 2x$ is expected	Magnitude.Special cases.2	16.5	oction es in	
Sine, cosine and tangent functions. Their graphs, symmetries and periodicity. Knowledge of graphs of curves with equations	 Trigonometric functions for any angle: Sign. 	C2:16.2-		TR
	 Area of a triangle. (A₂=0.5absinC) Area of segment. (A= A₁- A₂) Special triangles 	282-302)		IGONOMET
Radian measure, including use for arc length and area of sector. Use of the formulae $s=r\theta$ and $A=1/2r^2\theta$	 Radians ↔ Degrees. Angles and Quadrants (0° ≥ θ ≥360°). Area of sector and length of arc. 	C2:16.1 (Pages 252,253	triangles, R d applicatior	RY
The sine and cosine rules, and the area of a triangle in the form $\frac{1}{2}ab\sin C$.	 Solutions of triangle (sin, cos, area rule) Radians: Definition. 	C2:17		
EX: ask for an equation for a line that is parallel to a line cuts a given equation for a curve in two points. To include equation of circle in the form $(x-a)^2 + (v-b)^2 = r^2$	 Applications: Advanced use of the previous knowledge 			
Conditions for two straight lines to be parallel or perpendicular to each other.	 Forms of equations of straight lines: y=mx + c, y=mx, y=x+c y=c, y=o, x=c, x=0 ax+by+c=0 Sketching 		Co-ord	GI
$3x + 4y = 18$ through the point (2, 3) has equation $y - 3 = \frac{4}{3}(x - 2)$	• Equation of a line: $y - y_1 = m (x - x_1)$ or $y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$ $= \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$	C1:6 (pg 92-	inate geometry	EOMETRY
 the equation of a line through two given points the equation of a line parallel (or perpendicular) to a given line through a given point. 	<u>a</u> .			
Equation of a straight line, including the forms $y - y_1 = m(x - x_1)$ and $ax + by + c = 0$.	 Revision: Coordinates, Midpoint, Gradient(value,+,-) y = mx + c (Drawing and writing the equations if two 			

Grade 11 : Semester 2

SEQUENCE	& SERIES		ALGEBRA
Geometric series	Arithmetic series	Binomial expansion Algebra and function	
C2:20 (pg 349- 362)	C1:8.3 (pg 136- 145)	C2:14 (pg 218- 227)	C2:12 (pg 187- 200)
Geometric Series Definition. The concepts; common ratio, progression. Formula for the nth term in the arithmetic sequences. Advanced applications. Formula for the sum of n term(s) of arithmetic sequences. Advanced applications.	Arithmetic Series Definition. The concepts; common difference, progression. Formula for the nth term arithmetic series. Advanced applications. Formula for the sum of n term(s) of arithmetic series. Advanced applications.	 Binomial expansion using Pascal's triangle. Notation n! and (ⁿ_r) Formula for binomial expansion 	 Identities Long division Revision the concepts; (Quotient, Divisor, Dividend, and Remainder) Dividing a polynomial by (ax+b). Dividing a polynomial by (ax²+bx+c). A simpler method of division (ex. A cx + b / Cx + D Remainder and Factor theorem Factorising polynomials
, N)	Ν	
The sum of a finite geometric series; the sum to infinity of a convergent geometric series, including the use of r < 1. The general term and the sum to n terms are required. The proof of the sum formula should be known.	Arithmetic series, including the formula for the term & sum of the first <i>n</i> natural numbers. The general term and the sum to <i>n</i> terms of the series are required. The proof of the term & the sum to n terms formula should be known.	 The students should be able to use Pascal's triangle to expand (a + b)ⁿ for small positive integers n. Familiar with notations n! and (ⁿ/_r) able to use the binomial expansion formula to expand (a + b)ⁿ for all positive integers n 	Algebraic division; use of the Factor Theorem and the Remainder Theorem. Students should know that if $f(x) = 0$ when $x = a$, then $(x - a)$ is a factor of $f(x)$. Students may be required to factorise cubic expressions such as $x^3 + 3x^2 - 4$ and $6x^3 + 1/x^2 - x - 6$. Students should be familiar with the terms 'quotient' and 'remainder' and be able to determine the remainder when the polynomial $f(x)$ is divided by $(ax + b)$. Should use a known factor to determine another factor.

					AI 055	D 4						
			Tr		ALGEE mation		grapl	hs				
		100000			(pg	0			· · · · · · · · · · · · · · · · · · ·	·····		
					(pg 11- 42)	C3:2						
TOTAL NO. OF WEEKS	 y = f(ax) Sketching a graph of a function using the previous transformations rules. 	y = f(-x) $y = a f(x)$		 Transformation of graph of f(x) to : ∨ = f(x)±a 	 Sketching functions involving modulus signs. Comparison: f(x) , f(x). 	 Equalities with modulus signs. 	Definition of x .	Modulus functions:	 Relationship between the graphs of odd and even functions. 	o Determining of a given function is an odd of even function.	o Definitions.	Even and Odd functions:
28					4							
			The graph of $y = f(ax + b)$ will not be required.	for example, $y = 3 + \sin 2x$, $y = -\cos\left(x + \frac{\pi}{4}\right)$	Students should be able to sketch the graph of, for example, $y = 2f(3x)$, $y = f(-x) + 1$, given the graph of $y = f(x)$ or the graph of,	y = f(ax).	Combinations of the transformations $y = f(x)$ as represented by $y = f(x) + a$		The modulus function. $ ax+b = cx+d $ and $ ax+b \ge 3$		$y = f(x)$, $f(x) = x^a$ with a odd or even.	Definition of a function.

	The second and the se			
Applications of differentiation to maxima and minima and stationary points, increasing and decreasing functions. The notation f'(x) may be used for the second order derivative. To include applications to curve sketching. Maxima and minima problems may be set in the context of a practical problem.	 Increasing and decreasing functions Stationary points Identifying the type of a stationary point Maximum and minimum problems 	C2:15 (pg 230- 243)	Differentiation	n may page and a second a second and a second a second and a second and a second a second and a
The derivative of $f(x)$ as the gradient of the tangent to the graph of y = $f(x)$ at a point; the gradient of the tangent as a limit; interpretation as a rate of change; second order derivatives. For example, knowledge that $\frac{dy}{dx}$ is the rate of change of y with respect to x . Knowledge of the chain rule is not required. The notation $f'(x)$ may be used. Differentiation of x'' , and related sums and differences. For example, for $n \ne 1$, the ability to differentiate expressions such as $\frac{x^2 + 5x - 3}{3x^{\frac{1}{2}}}$ is expected. Applications of differentiation to Find equations of tangents and normals. Use of differentiation to Find equations of tangents and normals at specific points on a curve. Using the 1st principle to find simple differentiations. $f'(x) = \lim_{k \to 0} \frac{f(x+k) - f(x)}{k}$	 Rates of change Tangent to a curve Gradient of a curve Differentiation Function notation Vocabulary Differentiating from first principles Differentiation of polynomials Tangents and normals 	C1:9 (pg 148- 164)	Differentiation	CALCULUS
Rational functions. Partial fractions to include denominators such as $(ax+b)(cx+d)(ex+f)$ and $(ax+b)(cx+d)^2$ and (ax^2+b) . Use other resources for quadratic factor that cannot be factorised.	 Distinct linear factors. Repeated linear factors. Improper fractions. 	C4:8 (pg 179- 187)	Partial fractions	ALGEBRA
Objectives	Components of topic to be covered of some second of	in book PEARSON LONGMAN	Topic	Area of maths covered
		2.		

INTEGRATION		TRIGONOMETRY				
Integration	Integration	Trig involving all trig ratio's in all quadrants				
C2:19 (pg 325- 347)	C1:10 (pg 165- 173)	C3:3 (pg 46-80)				
 Indefinite and definite integrals Area under a curve To find an area using integration Area between a curve and a straight line Area between two curves The Trapezium rule Formula for the trapezium rule 	 The reverse of differentiation Finding the constant C Using the integral sign Rules for integrating xⁿ Integration of a polynomial Applying integration 	 Reciprocal Functions: Definition. Identities. Graphs. Comparing the six trigonometric functions. Identities (involved all the six trigonometric functions). Equations (involved all the six trigonometric functions). Addition formulae: sin(A±B), cos(A±B), tan(A±B). Advanced applications of all of the previous formulae. Double angle formulae: Advanced applications of all of the previous formulae. Half-angle formulae: Sin0.5A, cos0.5A, tan0.5A. Advanced applications of all of the previous formulae. 				
. 1	1.5	<u>က</u>				
Evaluation of definite integrals. Interpretation of the definite integral as the area under a curve. Students will be expected to be able to evaluate the area of a region bounded by a curve and given straight lines. Eg find the finite area bounded by the curve $y = 6x - x^2$ and the line $y = 2x$. If x dy will not be required. Approximation of area under a curve using the trapezium rule. For example, For example, $\int_0^1 \sqrt{(2x+1)}$ evaluate $\int_0^1 \sqrt{(2x+1)}$ $\int_0^1 \sqrt{(2x+1)}$ at $x = 0$, 0.25, 0.5, 0.75 and 1.	Indefinite integration as the reverse of differentiation. Students should know that a constant of integration is required. Integration of x^n For example, the ability to integrate expressions such as $\frac{1}{2}x^2 - 3x^{-\frac{1}{2}}$ and $\frac{(x+2)^2}{x^{\frac{1}{2}}}$ is expected Given $f'(x)$ and a point on the curve, students should be able to find an equation of the curve in the form $y = f(x)$.	Knowledge of secant, cosecant and cotangent. Their relationships to sine, cosine and tangent. Understanding of their graphs and appropriate restricted domains. Angles measured in both degrees and radians. Knowledge and use of $\sec^2\theta = 1 + \tan^2\theta$ and $\csc^2\theta = 1 + \cot^2\theta$. Knowledge and use of double angle formulae; use of formulae for $\sin(A \pm B)$, $\cos(A \pm B)$ and $\tan(A \pm B)$ and of expressions for $a\cos\theta + b\sin\theta$ in the equivalent forms of $r\cos(\theta \pm a)$ or $r\sin(\theta \pm a)$. To include application to half angles. Knowledge of the $\tan \frac{1}{2}\theta$) formulae will <i>not</i> be required. Students should be able to solve equations such as $a\cos\theta + b\sin\theta = c$ in a given interval, and to prove simple identities such as $\cos x \cos 2x + \sin x \sin 2x \equiv \cos x$. Note: Inverse trigonometrical functions and the factor formulae are not required.				

EXPONENTS & LOGS	Probability
The functions % and lnx	rade12
C3:4 (pg 90- 96)	Grade12 Semester 2
 Logarithms: Relationship and graph of ex and lnx. In ex = x e ln N = N In=loge ex and its inverse lnx: Graphs of y = af(x+a)+b if f(x) = ex where a and b are positive or negative Graphs of y = af(x+a)+b if f(x) = ln x where a and b are positive or negative Solving equations involving ex and lnx 	Elementary probability The terminology of probability Sample space Addition rule Multiplication rule Tree diagrams Independent and mutually exclusive events Number of arrangements
2	. <u>.</u>
The function e^x and its graph. To include the graph of $y = ae^{bx+c} + d$. The function $\ln x$ and its graph; $\ln x$ as the inverse function of e^x . Solution of equations of the form $e^{ax+b} = p \text{ and } \ln (ax+b) = q \text{ is expected.}$	Elementary probability. Sample space. Exclusive and complementary events. Conditional probability. Understanding and use of $P(A') = 1 - P(A)$, $P(A) = P(A) + P(B) - P(A \cap B)$, $P(A \cap B) = P(A) + P(B) - P(A \cap B)$. Independence of two events. $P(B A) = P(B)$, $P(A B) = P(A)$, $P(A \cap B) = P(A)P(B)$. Sum and product laws. Use of tree diagrams and Venn diagrams. Sampling with and without replacement

	25	TOTAL NUMBER OF WEEKS		
function is not required. Interpolation is not necessary. Questions may involve the solution of simultaneous equations			 Norr	S
required. Knowledge of the probability density function is not required. Derivation of the mean variance and cumulative distribution	2	 Area under the curve of the normal distribution curve 	 nal Distr	TATIST
tables of the cumulative distribution Knowledge of the shape and the symmetry of the distribution is		 The normal distribution The standard normal distribution 	 ibution	ICS
The Normal distribution including the mean, variance and use of			1	

Ahmed Al Thuhli	Moosa Hadi	M. Katira	A. Stevens	M. Hawthorn
Sign:	Sign:	Sign:	Sign:	Sign:
Date: (alabla)	Date: 10-06-07	Date: *	Date: 1010000	Date: